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Abstract Background In vivo mechanical characterisation of biological soft
tissue is challenging, even under moderate quasi-static loading. Clinical appli-
cation of suction-based methods is hindered by usual assumptions of tissues
homogeneity and/or time-consuming acquisitions/postprocessing.

Objectives Provide practical and unexpensive suction-based mechanical
characterisation of soft tissues considered as bilayered structures. Inverse iden-
tification of the bilayers’ Young’s moduli should be performed in almost real-
time.

Methods An original suction system is proposed based on volume mea-
surements. Cyclic partial vacuum is applied under small deformation using
suction cups of aperture diameters ranging from 4 to 30 mm. An inverse
methodology provides both bilayer elastic stiffnesses, and optionally the up-
per layer thickness, based on the interpolation of an off-line finite element
database. The setup is validated on silicone bilayer phantoms, then tested in
vivo on the abdomen skin of one healthy volunteer.

Results On bilayer silicone phantoms, Young’s moduli identified by suc-
tion or uniaxial tension presented a relative difference lower than 10% (up-
per layer thickness of 3 mm). Preliminary tests on in vivo abdomen tissue
provided skin and underlying adipose tissue Young’s Moduli at 54 kPa and
4.8 kPa respectively. Inverse identification process was performed in less than
one minute.

Conclusions This approach is promising to evaluate elastic moduli in vivo
at small strain of bilayered tissues.
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Corresponding Author
TIMC-IMAG Laboratory, UMR CNRS 5525, Grenoble Alpes University, Pavillon Taillefer,
Faculty of Medicine, Domaine de la Merci, 38706 La Tronche cedex, France.
E-mail: nathanael.connesson@univ-grenoble-alpes.fr



2 N. Connesson et al.

1 Introduction

Finite element models of soft tissue and organs are widely employed in the field
of biomechanics. Such tools help to investigate the underlying mechanisms that
either drive normal physiology or contribute to the onset and development of
diseases in soft tissues. Finite element models also contribute to the develop-
ment of medical devices and have the potential to improve computer-assisted
medical interventions [1]. Because of large inter-individual variability (both
in terms of morphology and in terms of organisation and composition of the
tissues), these computational models need to be personalised in order to be
clinically relevant. This represents a tremendous challenge because biologi-
cal tissues exhibit nonlinear, time-dependent, inhomogeneous, and anisotropic
behaviours. They also grow, remodel, and adapt to maintain particular me-
chanical target metrics (e.g., stress).

Extensive work has been conducted for decades in order to characterise
the elastic properties of soft tissues. The gold standard for ex vivo tissue
characterisation are based on conventional mechanical technique such as uni or
biaxial tensile tests [2–6], pure shear [5, 7], plain strain compression [5], bulge
tests [8, 9], indentation [10, 11] or suction [12]. If such traditional mechanical
methods proved invaluable, most of them are destructive (the sample needs to
be removed from the body) and cannot be used to characterise the mechanical
behaviour in vivo (in situ analysis). Moreover, several works highlighted the
fact that mechanical properties differ significantly between in vivo and ex vivo
conditions (e.g. vascularization of the tissue [13–15], preservation processes [6],
etc).

Several attempts were proposed to non-invasively identify mechanical prop-
erties of soft tissues in vivo [12, 16–21]. Suction-based set-ups, in particular,
received a lot of attention for the characterisation of the quasi-static mechan-
ical response of the superficial soft in vivo [22]. This technique consists in
placing a sterile chamber with an aperture in contact with the investigated
tissue and decreasing the pressure within the chamber. The amount of tissue
aspirated is related to tissue stiffness. The height of the aspirated tissue is
generally estimated by ultrasound methods [23–26], mechanical stops [27, 28],
optical coherence tomography [26] or cameras usually associated with mirrors
or prisms [29–36].

To expand the use of such methods, particular efforts were made to design
light devices [28, 37]. Several other developments are necessary to improve the
design of the part in contact with the skin so that it becomes unexpensive,
disposable, highly adaptive (aperture size, shape, material), and capable of
sustaining the required severe sterilisation process. Therefore, our group has
been working since 2015 on another approach: replacing the measurement
of tissue height with the volume of aspirated tissue [38]. Such a change in
the method enabled the elimination of camera, mirror, prism, and all the
electronic parts from the system suction head that was basically reduced to
a simple tube with an aperture. The corresponding family of devices, called
VLASTIC, enabled the evaluation of silicone stiffness with a maximum error of
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about 10% compared to uniaxial tensile tests [20]. It was also used in a clinical
study to evaluate tongue stiffness in ten patients for two conditions: at rest
and under general anesthesia [39]. However, in these studies, the underlying
tissues were assumed to be homogeneous. The significant differences in the
organisation, composition and mechanical behavior of the superficial tissues
require a distinction between the different soft tissue layers.

Several attempts have been proposed in the literature for the measurement
of the modulus of the top layer(s) of multilayered materials using suction-
based techniques. In 2006, Hendriks et al. [26] used suction with 3 aperture
diameters (1, 2 and 6 mm) glued to the forearm of a healthy volunteer and
imaged by optical coherence tomography. Three FE models were made (one
per diameter) which results were compared to experimental data to identify
elastic moduli (first order Mooney material behavior) under small deformation
of a bilayer model. The upper layer had the thickness of both the epidermis and
the papillar dermis (thickness of about 130 µm). The lower layer (thickness of
about 1 mm) was the reticular dermis overlying the subcutaneous fat. In this
work, the very thin upper layer was surprisingly found about 1500 times softer
than the lower layer. In 2011, Zhao et al. [12] demonstrated experimentally and
numerically on bilayer gelatin phantoms that a suction diameter smaller than
the thickness of the upper layer could be used to characterise only the upper
layer elasticity. In Barbarino et al. [40] (2011), the hyperelastic properties of
the two first superficial layers of the human face (skin and adipose tissue) were
evaluated based on MRI and ultrasound measurements and skin pressure-
apex height data. The same team extended this protocol in [33] to identify
elastic-viscoplastic material models using different time dependent pressure-
apex height curves. In 2021, they also proposed in [41] to identify the properties
of each layer of a 5 layer biphasic skin model that would explain a wide range
of time dependent ex vivo and in vivo experimental data. These improvements
are very promising but, unfortunately, are difficult to apply in a clinical routine
to evaluate patient specific mechanical properties: extensive experimental and
numerical work is required for each identification.

In order to address the challenge of developing techniques compatible with
the constraints of clinical routine, another approach is suggested: (1) keep
the testing system parts in contact with the tissue with the minimum design
constraints as possible to favor adaptability, and (2) apply an experimental
method as simple and as rapid as possible so that further development could
lead to direct clinical application.

By keeping these issues in view, the inverse analyses were also optimised
so that identifications can be performed in almost real-time. The associated
trade-off is that the material structure and identified mechanical properties
need to be simplified. As a first step, only the initial elastic moduli of bilayered
structures are sought in this contribution.

This work therefore aims at going beyond the state-of-the-art (i) by using
a single, easy to use and adaptable suction system, switching only aperture
heads to perform all the measurements, (ii) by proposing identification of
Young’s moduli of each constituent of bilayered structures using an off-line
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finite element database in almost real-time, (iii) by evaluating the parameter
identifiability of the tested situation.

Additionally, as far as the authors are aware of, only the methods proposed
in [12, 28, 36] have been validated on reference phantoms; all other studies di-
rectly applied the proposed methods directly in vivo to human tissue for which
mechanical properties were complex and unknown. Implementing a validation
on multi-layered phantoms made from known reference materials is a tedious
task that yet seems necessary prior to in vivo application. Such comparisons
provide realistic error evaluation and confidence in the obtained results.

The whole method of this contribution has been experimentally evaluated
by comparing the identified stiffness of bilayer silicone phantoms with classic
experimental tensile tests performed on the same material. The method has
then been applied in-vivo to evaluate the properties of the skin (epidermis and
dermis) and fat of the abdomen of a healthy volunteer.

2 Materials and Methods

The Materials and Methods section is organised as follows: section 2.1 presents
the improved cyclic testing device proposed in this contribution. The device al-
lows to characterise experimentally samples by measuring load-volume curves
for different aperture diameters. Section 2.2 presents the inverse methodology
implemented to estimate both of the bilayer elastic stiffness, and optionally
the upper layer thickness, based on the interpolation of an offline finite ele-
ment database. The uncertainty evaluation of the identified parameters is also
described. Section 2.3, presents the methodology for the fabrication and the
mechanical characterisation of custom made bilayered silicone phantoms. Con-
ventional uniaxial tensile test provide reference values to validate the method.
Section 2.4 presents the protocol and the application of the designed device
(1) to silicone bilayer phantoms and (2) to the abdomen tissue of a healthy
volunteer.

2.1 Cyclic testing device to obtain pressure-volume curves

2.1.1 Cyclic testing device

The testing system was composed of two air-filled parallel circuits both con-
nected at a valve, a manometer (AMS-5812-0015-D-B, Analog Microelectron-
ics GmbH) and a syringe (CODAN 1 mL Luer TBC) (figure 1 a). The stroke
∆L was applied to both syringes simultaneously and cyclically using a load-
ing drawer (figure 1 a and b). The volume variation of the syringe ∆Vsyringe

was supposed to be identical in each circuit (including imperfections such as
deformation of the syringe piston, etc.).

The first circuit was a simple tube closed at its end, referred to as ”Refer-
ence circuit”. This circuit basically provided a measurement of the volume vari-
ation of the syringe ∆Vsyringe thanks to the measurement of pressure ∆Pref
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and a linear model.

∆Vsyringe =
∆Pref

kref
(1)

where kref is the stiffness of the reference circuit. The length of the refer-
ence tube was chosen so that the pressure variation ∆Pref in the reference
circuit swept the entire sensor pressure range given the input volume varia-
tion ∆Vsyringe.

The second circuit, called the ”tissue circuit”, was made up of a tube
connected to a 3D printed resin cup of suction diameter Di (figure 1 c) applied
onto the tested tissue. A total of I = 9 cups, with aperture diameter Di ∈
[4 , 30] mm, were made in nylon (HP PA11 bio-compatible material) with a HP
Multi Jet Fusion 3D printer. All geometric characteristics of the cup in contact
with the tested tissue (wall thickness, fillet radius, etc.) were proportional to
the internal diameter of the aperture Di. The pressure variation in the tissue
circuit is noted ∆Ptissue.

The results of these two circuits were combined to provide the global
pressure-volume curve (∆Ptissue test −∆Vsyringe test). The general idea is that
this curve can be transformed into the tissue pressure-volume curve (∆Ptissue test−
∆Vtissue i) [20, 38, 39], where ∆Vtissue i is the volume of tissue aspirated into
the cup of suction diameter Di (figure 2 a and b).

Taking into account the different volume variations in the tissue circuit
between time t0 and t, it can be written that (figure 2 a and b) [39]:

∆Vsyringe test = ∆Vtissue i +∆Vsystem i (2)

where ∆Vsystem i represents both air expansion and system volume varia-
tions. Equation 2 means that any additional room ∆Vsyringe test made into
the system thanks to the syringe is filled partly by the aspirated tissue vol-
ume ∆Vtissue i and partly by the air expansion and system volume reduction
∆Vsystem i.

The volume change of the system ∆Vsystem i is a direct function of the
pressure inside the tissue circuit. The volume function ∆Vsystem i for each cup
of diameterDi was identified during a separate calibration measurement where
the tissue was replaced by an undeformable material (figure 2 b, dashed green
curve). During calibration, the system volume variation function ∆Vsystem i

was directly identified experimentally as equation 2 simplifies into:

∆Vsyringe cal = ∆Vsystem i (3)

Note that the calibration curve (∆Ptissue cal − ∆Vsyringe cal) is different in
equation 3 than in equation 2 as the whole tissue circuit is stiffer when testing
a non-deformable material than when testing a deformable tissue (figure 2 b,
green dashed and blue continuous curves, respectively).

In practice, the experimental calibration curve (∆Ptissue cal−∆Vsyringe cal)
for each cup of diameter Di was approximated by a polynomial of degree 2 to
account for small non-linearities in the system.
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2.1.2 Measurement of the reference circuit stiffness kref

The volume ∆Vsyringe applied to both circuit was computed using the ∆Pref

pressure and the reference circuit stiffness kref (equation 1). To evaluate the
stiffness of the reference circuit kref , different cyclic peak-to-peak volume am-
plitudes ∆V were applied to the reference circuit: the syringe course ∆L was
increased step by step by changing the crank eccentricity using a 500 µm
thread pitch screw (figure 1 b). The slope of the peak-to-peak pressure varia-
tion amplitude∆Pref versus the peak-to-peak volume amplitude of∆Vsyringe =
∆LSsyringe was considered to be the stiffness of the reference circuit (kref =
0.992 mbar.mm−3).

2.2 Inverse methodology to estimate superficial bilayer elastic stiffness from
pressure-volume data

Let us assume, at this point, that Ji cycles of the tissue pressure-volume curves
(∆Ptissue test−∆Vtissue i) for each aperture diameter Di have been measured.

Thus, a set of Nm =
∑I

i=1 Ji curves is available to perform the inverse iden-
tification.

Inverse identification consisted in estimating both Young’s moduli in the
two superficial upper layers (ER1 and ER0), and optionally, the thickness LR1

of the upper layer (figure 3). The physics that explain the dependence of
tissue pressure-volume curves (∆Ptissue test −∆Vtissue i) on aperture diameter
Di was summarised in section 2.2.1. This description lead to the extraction of
the apparent stiffness of the bilayer, noted Bij EXP , from each cycle j of the
pressure-volume curves (∆Ptissue test −∆Vtissue i).

The Nm experimental apparent stiffnesses Bij EXP were then combined
with their simulated counterpart to design the cost function ΦParam. This cost
function was minimised to identify the parameters (section 2.2.2). In this work,
the simulated bilayer mechanical apparent stiffness were evaluated in real time
using interpolated eigen vectors provided by a Principal Component Analysis
(PCA) performed over a Finite Element (FE) database. This is similar to the
use of precalculated abacuses. Details about the used FE model, the associated
database, and the eigen vectors provided by the PCA are reported in the
appendix A for clarity and shortening purpose.

Similarly, the mathematical method used to evaluate the uncertainty of
the identified parameters and the experimental variance is described in ap-
pendix B.

2.2.1 Tissue volume normalization and bilayer apparent stiffness Bij

The pressure-volume curves of the tissue (∆Ptissue test − ∆Vtissue i) contain
information on the mechanical behaviour of the tissue integrated over the
volume of loaded material below the diameter of the aperture Di (figure 3).
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As a general rule of thumb, information is extracted up to a depth of about
one diameter Di [12].

On a homogeneous phantom, changing the diameter of the aperture Di is
equivalent to changing the scale of the test, which also changes the volume
range in the tissue pressure-volume curves (∆Ptissue test−∆Vtissue i). To com-
pare the results obtained with different aperture sizes, the notion of tissue
shape Stissue was defined by normalising the volume of the aspirated tissue
Vtissue i by the volume of a half-sphere Vref i of diameter Di [39] (a similar
normalisation of the apex height was also found in [12]):

Stissue =
Vtissue i

Vref i
(4)

with Vref i =
4

6
π

(
Di

2

)3

(5)

A shape Stissue = 1 means that a volume of half a sphere has been aspirated
into the cup, which is the situation illustrated in figure 3 a and b. Note that
such a situation was never reached experimentally during this work.

Eventually, the apparent stiffness of the bilayer at diameter Di and for
the loading cycle j was defined as the slope of the cycle j of the curve
(∆Ptissue test−∆Stissue i) around a shape S = 0.1. This relationship is written
as:

Bij =
∆Ptissue

∆Stissue i

∣∣∣∣
S=0.1

(6)

If the material is homogeneous throughout the phantom, the shape pressure
curves (∆Ptissue test −∆Stissue i) should overlap for all diameters Di; the ap-
parent stiffness of the bilayer material Bij should be independent of the suction
diameter Di.

On the contrary, on a bilayered phantom, a change of aperture diameter Di

modifies the relative contribution of the upper layer to the shape Stissue (fig-
ure 3, change of diameterDi between situations a and b); the apparent stiffness
of the bilayer material Bij changes with the suction diameter Di.

In practice, the apparent stiffness of the bilayer material Bij was extracted
for each cycle j from the pressure shape curve (∆Ptissue test − ∆Stissue i) at
a shape S = 0.1 by locally fitting a polynomial of degree 1 in the shape
range S ∈ [0.05 0.15]. For a shape of S = 0.1, center of the selected range,
the material fills only 10% of half a sphere and the whole bilayer material is
considered to be loaded under small strains [26].

2.2.2 Noise model and cost function

As the extracted data Bij EXP are derivatives, a multiplicative disturbance
model was assumed. For each of the Nm measurement point Bij EXP with an
aperture diameter Di, it comes:

Bij EXP = Bi SIM (β, θ) (1 + ϵij) (7)
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where ϵij represents a random disturbance of zero mean and variance σ2
i . The

slope Bi SIM (β, θ) is the result of the simulation of a suction with a diameter
Di onto a bilayer material. It represents thus the value that would be measured
if no disturbance occurred. The slope Bi SIM (β, θ) was supposed to present no
mismatch with the experimental data once the proper parameter vectors β and
θ were found. Moreover, the variance σ2

i was supposed to be small compared
to one, may depend on the aperture diameter Di (heteroscedasticity [42, 43]),
and must account for both the intra and inter-test variance for diameter Di.
These hypotheses are discussed in section B.2. The vector β represents the
sought unknowns and is of length P . The vector θ represents the other model
parameters (aperture diameter Di, friction, compressibility coefficient, etc.).
These parameters are described in more details in appendix A.

The three parameters (the upper layer thickness LR1 , its associated Young
modulus ER1 and the lower layer Young’s modulus ER0, figure 3) were dis-
tributed between the unknowns and model parameters β and θ depending on
the identification goals:

P = 3 (bilayer, β =< ER1, ER0, LR1
>T : when the phantom was a bilayer

phantom, the upper layer thickness LR1
, Young’s modulus ER1 and the

lower layer Young’s modulus ER0 could all be estimated.
P = 2 (bilayer, β =< ER1, ER0 >T ): when the phantom was a bilayer phan-

tom, the upper layer thickness might be provided in θ by an annex mea-
surement. In such a case, only the Young moduli of the upper and lower
layers ER1 and ER0 were estimated in β.

P = 1 (homogeneous, β =< ER1 >): when the phantom was considered ho-
mogeneous, only the averaged material Young’s modulus was estimated
(ER1 = ER0). In such a case, the apparent stiffness Bi SIM (β, θ) is inde-
pendent of the thickness LR1 of the upper layer.

In practice, the simulated apparent stiffness Bi SIM (β, θ) was evaluated by
interpolating a FE database. This interpolation, based on the eigenvectors
provided by a PCA, allowed an evaluation of Bi SIM (β, θ) in real time. Addi-
tional details are reported in appendix A for clarity and shortening purpose.

With the model proposed in equation 7, the cost function ΦParam was de-
fined in the Weighted Least Square sense (WLS) by comparing the experimen-
tal material apparent stiffnessBij EXP to its simulated counterpartBi SIM (β, θ):

ΦParam =

I∑
i=1

w2
i

Ji∑
j=1

(
Ln
(
Bi SIM(β,θ)

)
+ ϵij − Ln

(
Bij EXP

))2

(8)

where I is the number of aperture diameter Di used, Ji is the number of
loading cycle measured for the diameter Di. Ideally, the weighing factor w2

i

would be equal to 1
σ2
i
so that the cost function ΦParam is not dominated by

the experimental data provided by a specific aperture diameter Di [44]. Note
that the multiplicative noise model in equation 7 has been converted into an
additive noise model in ΦParam using the logarithm function. This method
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is known as the ”both side transformation” method [43], and is also used for
inverse identification with suction in [25, 26].

The optimal parameter vector β̂ that minimises the cost function ΦParam

was estimated by applying the Levenberg-Marquardt methoda [45] applied to
the parameters ER1 and LR1

in β. The parameter ER0 in β was estimated
by solving a linear system since this parameter is linearly conditional on ER1

and LR1 (equation 10, appendix A, please consult [44] for more details). For
each identification, different initial guesses were made for the moduli stiffness
ratios ER1

ER0
([1 2 5 10]) and upper layer thickness LR1

([1 4 6 10] mm). Such
starting points were tested to avoid possible local minima. In this contribution,
the initial guesses had no impact on the identified minimum.

The associated residual norm, noted Φ0, writes:

Φ0 =

I∑
i=1

w2
i

Ji∑
j=1

u2
ij =

I∑
i=1

Ji∑
j=1

e2ij (9)

where uij represents the residual error vector and eij = wiuij is the weighed
residual error vector. Note that the residual error vector uij is slightly different
from the noise vector ϵij since the noise is also fitted by the model. If the
weights w2

i were equal to 1
σ2
i
, the residual norm Φ0 should follow a chi-square

distribution with df = (Nm − P ) degree of freedom. The rejection threshold
at a confidence level of 5% is noted χ2

df 95%.

From a statistical point of view, the choice of the weights w2
i in the cost

function ΦParam does not significantly affect the mean and spread of the iden-
tified parameters [43, 46]. In fact, choosing weights w2

i representative of the
experimental variance σ2

i is important mainly if the parameter identifiability
is directly inferred from the function ΦParam. This is the case in this con-
tribution. Additionally, a proper evaluation of the experimental variance σ2

i

is difficult when only few repeatability data is available (which would be the
case during a clinical application). In this situation, an idea is to use the
residual error vector uij (equation 9) to estimate the sought experimental
variance σ2

i . Unfortunately, the initial choice of the weights w2
i impacts the

identified parameters and residual vector uij , which, in turn, influences the
estimated experimental variance σ2

i and its associated weights w2
i . An itera-

tive procedure was implemented to solve this difficulty, which was possible in
this work thanks to the real time evaluation of the simulated apparent stiff-
ness Bi SIM (β, θ). For concision purpose, the mathematical methods applied
to evaluate the parameter identifiability and the variance estimation derived
from the residual vector uij are reported in appendix B.

2.3 Bilayer silicone phantoms

To validate the method, bilayered phantoms were made of two mechanically
characterised silicones R0 (soft) and R1 (stiffer).

a lsqnonlin function in MATLAB
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These silicones were obtained by mixing equal mass of component A and
Bb and adding silicone softenerc (14.6% of (A+B) mass for R1, 30% of (A+B)
mass for R0). The mixed silicones were vacuumed during 5 min to remove air
bubbles prior to pouring.

Three types of phantoms were made:

Homogeneous suction phantoms: simple cylinders of ∅96 mm × 70 mm
used as references and labelled R0 and R1 (figure 4 a).

Bilayered suction phantoms: cylinders of ∅96 mm, with thick R0 bottom
layer (soft), and thin upper R1 layer (stiffer) of thickness LR1

(A to E,
figure 4 a). The phantoms were made upside down: the R1 stiffer layer was
first moulded by controlling the volume poured with a syringe, followed
one hour later by the softer layer of R0.

Flat tensile specimens: 5 to 10 flat specimens (40 × 160 × 3 mm3 molds)
were moulded from the same mixes as the suction phantoms. The average
section A0 of these specimens were estimated by weighting each specimen
mass mtens so that mtens = ρ bA0 with ρ the silicone volumetric mass and
b the length of the mould.

The reference silicone tensile Young’s Moduli ER1 tens and ER0 tens were
evaluated during quasi-static uniaxial tensile tests on a MTS tensile machine.

2.4 Experimental protocol for the suction device

The proposed suction-based methodology for the mechanical characterisation
of superficial layers was applied (1) on silicone bilayer phantoms and (2) to
the abdomen tissue of a healthy volunteer (4 cm to the right of the umbilical
cord).

Ethical agreement for study participant A 38 year-old male healthy volunteer,
with a body mass index of 25.4, was included in this preliminar study. He
gave his informed consent to the experimental protocol previously approved
by the local ethics committee (study agreement CERNI N° 2013-11-19-30) and
as required by the Declaration of Helsinki (1964).

Sampling frequency: The pressures in the reference and tissue circuits (∆Ptissue−
∆Pref )n were measured simultaneously. The underscript n represents the mea-
surement index. The pressure sampling frequency was of 100 Hz. The pressures
of the two circuits were synchronised once per cycle using a homing sensor (fig-
ure 1 b).

b Two main components of Skin FX10 110019
c Deadner Skin FX10 110020
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Cyclic volume amplitude: The peak to peak volume ∆Vsyringe amplitude was
of 0.1 mL and kept identical for all cup diameters Di. Note that with such
a small withdrawn volume, testing the system in-vivo presents absolutely
no risk to the subject. A complete cycle (withdrawal and injection) lasted
about 10 seconds. Only pressure signals obtained during withdrawing and
for ∆Vsyringe > 0.01 mL were used to avoid impact of possible syringe piston
asymmetrical behaviour during movement inversion in the reference and tissue
circuits. For the in-vivo measurements, the volunteer was also asked to hold
his breath during withdrawal.

Inter and intra test reproducibility: On the silicone phantoms, a total of 5 cy-
cles were performed during each acquisition (intra-test reproducibility). Each
test has been performed 2 to 3 times (inter-test reproducibility). On the ab-
domen, a total of 10 cycles were performed during each acquisition (intra-test
reproducibility). Each test has been performed 5 to 7 times (inter-test repro-
ducibility).

Circuit air-tightness and initial air quantity: During calibration or measure-
ment on tissues, an ultrasound gel cord filled an external groove to ensure
air tightness (figure 1 a). Pressure-pressure curves (∆Ptissue −∆Pref )n were
monitored during all tests; leakage was identified when pressure Ptissue drifted
cycle after cycle. Such tests were immediately discarded.

The air quantity enclosed in the system during the calibration and mea-
surement on tissues should be identical to obtain correct mechanical char-
acterisations. To achieve this, the syringes were set in their empty reference
position using the homing sensor (figure 1 b) before closing the valves: the air
volume enclosed in the system was reproducible and minimum at the starting
point (n = 0). Note that during in-vivo tests on the abdomen tissue, the cup
was placed in position about 2 minutes before performing the first test so that
the aperture temperature was stable during the test.

Diameter order: During in-vivo tests on the abdomen tissue, the measure-
ments were performed with increasing cup sizes (4 mm to 30 mm).

Normal loading minimisation: Each aperture is connected to a tube and is
held in place on the tissue during a test, which necessarily adds normal and
shear loads between the aperture and the tissue. In any situation, these loads
were kept as low as possible without impacting the circuit air-tightness.

When a measurement was made on a silicone phantom, a special 3D printedd

holder (figure 4 a, applied to phantom A) was used to hold the cup in place.
The aim of this holder is to minimise the influence of the tube and to minimise
as much as possible the normal and shear loads between the aperture and the
phantom.

d 3D printer Prusa MK3S+
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Flat tensile specimens Etensile (kPa) CI at 95% (kPa)

R0 9.0 ±0.65

R1 74.7 ±2.3

Table 1 Reference values: identified Young’s Moduli from tensile test on flat specimens.
The reported Confidence Intervals (CIs) are twice the identification standard deviation.

During tests on abdominal tissue, the cups were held with a medical plaster
placed on one side of the cups for diameters smaller than Di = 15 mm. For
larger diameters, no plaster was applied as the ultrasound gel cord and cup
weight were enough to ensure air-tightness.

During calibration, the cup Di was placed on an underformable material
(2 mm sheet of vulcanised rubber glued to an aluminium block) and held in
place with a clamp.

Upper layer thickness measurement: On the silicone phantoms, destructive
measurements were performed after suction tests: all phantoms were cut in
half. Each upper layer was peeled off; the separation naturally occurred at
the interface between R1 and R0. Magnified scaled control pictures were then
taken with a camera. The thickness were evaluated at 8 different locations.

The abdomen tissue has been considered as a bilayer, namely the upper
layer composed of the epidermis and dermis, and the lower layer composed
of fat and muscle. The thickness of the upper layer was evaluated using eight
Bmode UltraSound (US) local measurementse . Fat and muscle thicknesses
were measured using the same method but with a different probef .

3 Results

3.1 Reference values obtained on phantoms

The tensile results obtained on R0 and R1 flat silicone specimens are presented
in figure 4 b. Fitting a Neo-Hookean incompressible model onto the tensile
curves for λ1 = L

L0
∈ [1, 1.1] provided Young’s moduli of ER1 tensile = 74.7 ±

2.3 kPa and ER0 tensile = 8.97 ± 0.64 kPa where the tolerance intervals are
given as twice the experimental standard deviation (table 1).

The stiffness ratio ER1 tensile

ER0 tensile
observed using tensile data is equal to 8.3.

The optically measured thickness LR1 pic of reference bilayer phantoms
are presented in table 2. Errors intervals are given as twice the experimental
standard deviation. The thickness results using Bmode US on abdomen tissue
(figures 5 a and b) are also reported in this table.

e Aixplorer, probe SuperLinear� SLH20-6
f Aixplorer, probe SuperLinear� SL10-2
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Suction

specimen

Layer thickness

LR1 pic or LskinUS (mm)

CI at 95%

(mm)

R0 0

A 1.08 ±0.064

B 3.27 ±0.06

C 6.22 ±0.055

D 9.16 ±0.076

E 11.75 ±0.05

R1 69

Abdomen {epidermis + dermis} 2.21 ±0.033

Abdomen fat 22 to 27

Abdomen muscle about 12.5

Table 2 Reference values: layer thickness LR1 pic evaluated by an annex destructive mea-
surement on silicone phantoms. Measurement LskinUS using Bmode ultrasound with two
different probes on the abdomen. The reported Confidence Intervals (CIs) are twice the
experimental standard deviation.

3.2 Tissue pressure-volume curve: (∆Ptissue test −∆Vtissue i)

Illustrations of the experimental tissue pressure-volume curves (∆Ptissue test−
∆Vtissue i) are presented for the phantom A and on the abdomen tissue with
the different aperture diameters Di in figures 6 a and 7 a respectively. Only
the first cycle for the first test is presented. The data selected to compute
the apparent material stiffness Bij exp is presented in colour on the plots (the
shape range the closest possible to S ∈ [0.05 0.15]). The apparent stiffness
Bij exp of phantom A and on the abdomen tissue are presented in colour in
figure 6 b and 7 b, respectively. The results Bij exp for all cycles of all tests are
also presented as black markers in these plots. Note that the results Bij exp are
randomly distributed around the first cycle result (coloured marker, figure 7 b);
the cyclic loading history did not have any visible impact on the experimental
results for the applied shape range when testing the abdomen tissue.

3.3 Material apparent stiffness: Bij exp

The experimental material apparent stiffness Bij exp (equation 6) for each cycle
and for all the silicone phantoms are presented as a function of the aperture
diameter Di in figure 8 a. Taking advantage that the thicknesses LR1 pic were
measured during an annex measurement (table 2), the experimental apparent
stiffness Bij exp are also plotted versus the scale ratio Di

LR1 pic
in figure 8 b.
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3.4 Experimental variances σ2
i

The variances of the experimental data were evaluated over the logarithm of
the material apparent stiffness Ln(Bij k) (equations 15 and 16, appendix B).
The variances on silicone phantoms and during in vivo tests were evaluated
separately.

To compute σ2
i AUE (equation 16, appendix B), all experimental data were

used (671 data points Bij EXP k for the silicone phantoms, 560 data points for
the abdomen tissue).

3.4.1 Silicone phantoms

A model with P = 2 was applied to each phantom A to E. A model with
P = 1 was applied to phantoms R0 and R1. The weights wi, initially chosen
equal to one, were updated at each iteration until the convergence of the AUE
variance estimation. The sought Young’s moduli β =< ER1, ER0 >T were
shared between the models so that the optimal moduli was the unique set
noted ER1 all = 84.40 kPa and ER0 all = 9.85 kPa (figure 9 a and b, each
black curve being computed with the layer thickness LR1 pic of the considered
phantom (table 2)). The resulting stiffness ratio is ER1 all

ER0 all
= 8.56.

After the convergence of the weights w2
i , the norm of the residual error

vector was Φ0 = 669.16. The residual error Φ0 should follow a chi-square
probability law with df = (Nki − P ) = 669 degree of freedom. For such a
chi-square law, the acceptability threshold at α = 5% is χ2

df 95% = 730.

The residual error vector uij k used to compute the converged σ2
i AUE (equa-

tion 16, appendix B) is presented in figure 9 c. The final values of σ2
i AUE are

presented in figure 9 d. Variances σ2
i Classic (equation 15, appendix B) are also

presented in figure 9 d. For these measurements on silicone phantom, het-
eroscedacity is clearly visible, the logarithmic both-side transformation being
insufficient to remove it completely.

3.4.2 Abdomen tissue

A model with P = 2 was identified on the abdomen data while updating
the weights wi, initially chosen equal to one, at each iteration. The residual
converged error vector uij used to calculate σ2

i AUE (equation 16, appendix B) is
presented in figure 11 c. The final values of σ2

i AUE are presented in figure 11 d.
Variances σ2

i Classic (equation 15, appendix B) are also presented in figure 11 d.

The norm of the residual error vector was Φ0 = 558. The residual error Φ0

should follow a chi-square probability law with df = (Nki − P ) = 558 degree
of freedom. For such a chi-square law, the acceptability threshold at α = 5%
is of χ2

df 95% = 614.
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Suction

phantom
Φ0/χ

2
df 95%

Eopt

(kPa)

RE

(%)

CI at 95%

(kPa)

Model P = 1 R0 318/175 10.9 (21.1% ) ±0.12

Model P = 1 R1 7/127 81.2 (8.6% ) ±1.07

Table 3 Identification results from suction data on homogeneous phantoms for the P = 1-
parameter model.

3.5 Optimal parameter β and identifiability

For all the identifications presented hereafter, the variances σ2
i AUE have been

used to compute the weights w2
i in equation 8.

For illustration purpose, details of fitted curves, Indifference Regions (IR)
and Confidence Intervals (CIs) are presented on the phantom B and on the
abdomen tissue (figures 10 and 11). The suction results obtained on phantoms
R0 and R1 for P = 1 are summarised in table 3 with direct comparisons to
the tensile reference values.

The results of the suction on silicone phantoms A to E are summarised in
table 4 for P = 2 and 3 with direct comparisons to the reference values when
applicable.

Note that, on the stiffer silicone R1, the measurement Bij exp is almost
independent on the aperture diameter Di (figure 8 a, red curve) which is in
accordance with theory for a upper layer thickness greater or equal to the
aperture diameters [12]. The suction test overestimated the R1 Young’s Mod-
ulus compared to the tensile result ER1 tensile by 8.6% (table 3). On the softer
silicone R0, the measurement Bij exp increased for small Di (figure 8 a, blue
lowest curve). This behaviour was not expected for an homogeneous phan-
tom. A possible explanation is that soft materials are very sensitive to normal
loading applied to small cups [28]. Such an initial load causes the material
surface to be curvaceous, which replaces some air into the cup by material
before closing the system valve. The calibration curve used, measured on a
flat undeformable surface, is thus less stiff than reality. This bias induces an
underestimation of the tissue volume ∆Vtissue i and an overestimation of mea-
surement Bij exp. However, this phenomenon should be limited by the presence
of the holding system (figure 4 a). In any case, this experimental result causes
the P = 1-parameter model to overestimate the R0 Young’s Modulus com-
pared to the tensile one ER0 tensile by 21.1%. The fitting score of Φ0 = 318
is above the threshold value of χ2

df 95% = 175 (table 3); this curve could be
considered as an outlier.

Also note that phantom A had a very thin upper layer of 1.08 mm: the
aperture diameters from 4 to 30 mm were well adapted only to extract infor-
mation about the stiffness ER0 of the lower layer. Relative errors with tensile
test on soft silicone ER0

were lower than 10% (7 and 5% for P = 2 or P = 3-
parameter models, respectively, table 4). The smallest aperture diameter being
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Model P = 2

phantom Φ0/χ
2
df 95% LR1 pic (mm) ER1 opt (kPa) ER0 opt (kPa)

A 15/129.9 1.08± 0.064 91.3 (22% ) ±16.9 9.6 (7% ) ±0.35

B 13/121 3.27± 0.06 81 (8% ) ±4.5 9.9 (11% ) ±0.5

C 6/135.5 6.22± 0.055 82.9 (11% ) ±2.6 12.3 (38% ) ±1.25

D 16/146.6 9.16± 0.076 82.5 (10% ) ±2.1 12.6 (40% ) ±2.25

E 7/152.1 11.75± 0.05 82.2 (10% ) ±2 11.4 (27% ) ±4

Model P = 3

phantom Φ0/χ
2
df 95% LR1 opt (mm) ER1 opt (kPa) ER0 opt (kPa)

A 13/128.8 1.41 (30% ) ±0.45 60.9 (-19% ) ±27 9.4 (5% ) ±0.4

B 11/119.9 3.04 (-7% ) ±0.33 87.5 (17% ) ±11.1 10.3 (15% ) ±0.7

C 3/134.4 5.46 (-12% ) ±0.73 86.9 (16% ) ±5.25 15.5 (72% ) ±3.15

D 15/145.5 7.89 (-14% ) ±2.1 84.4 (13% ) ±4 19 (111% ) ±10.8

E 4/151 7.86 (-33% ) ±3.71 85.2 (14% ) ±4.25 31.8 (254% ) ±19.6

R0 50/173 0.34 (N.A.) ±1.23 178.9 (N.A.) ±1320 9.1 (2% ) ±0.85

R1 - Not converged Not converged Not converged

Table 4 Identification results for the P = 2 and P = 3-parameter models on the silicone
phantom: the optimal identified values are in bold. The Relative Errors (RE) between
optimal suction and tensile reference values are in (italic). The confidence interval provided
was computed at 95% for each parameter. Color code: light gray if |RE| < 15%, gray if
15% < |RE| < 30%, darker gray if |RE| > 30%.

4 times larger than the thickness of the upper layer, the upper modulus ER1

is the least well identified among the silicone phantom tested (relative error of
+22 and −19% for P = 2 or P = 3-parameter models, respectively, table 4),
which is pointed out by the suction indifference region greater than 17 kPa on
ER1 .

Phantom B, with an upper layer of 3.27 mm is the most adapted among
the phantoms to provide both proper upper and lower layer moduli given the
used aperture diameters range (|RE| < 15% for all optimal values and for
P = 2, and close to 15% for the P = 3-parameter models, table 4).

Phantoms C to E, with layers thicker than 6 mm, provide only proper
upper layer modulus ER1 identification (RE lower than 15%).

A more global summary on silicone phantoms is graphically represented
in figure 12 to show the CI variations with the value of parameter P and the
upper layer thickness. The results obtained on homogeneous phantoms (P = 1)
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Abdomen tissue

results
Φ0/χ

2
df 95%

LskinUS or Lskin opt

(mm)
Eskin opt (kPa) Efat opt (kPa)

Model P = 2 558/614 2.21±0.033 53.5 ±1.05 4.8 ±0.1

Model P = 3 553/613 2.15 (-3% ) ±0.05 54.9 ±1.35 4.9 ±0.1

Table 5 Identification results for the P = 2 and P = 3-parameter models on the abdomen
tissue: the optimal value is in bold. The Relative Error (RE) between reference and optimal
suction thickness is in (italic). The confidence interval provided were computed at 95% for
each parameter.

and by tensile tests are reported as horizontal red, blue and black bands of
twice the experimental Std (indifference regions at 95%).

The aspiration results on the abdomen tissue are summarised in table 5
for P = 2 and 3.

4 Discussion

The aim of this work was to improve in vivo suction-based mechanical charac-
terisation of the superficial layers of soft tissues. To go beyond the state-of-the-
art, an adaptable suction system was proposed in this contribution, allowing
to perform suction tests with multiple aperture diameters. Inverse identifica-
tion of Young’s moduli of a bilayered structure was performed in less than one
minute per phantom using an offline finite element database. Representative
confidence intervals were also provided.

The method was successfully tested on controlled bilayer phantoms for up-
per layer thickness from 1 to 12 mm. The bilayer phantom with an upper layer
of 3 mm presented the best parameter identifiability for both Young’s moduli
(relative errors lower than 10% compared to reference values obtained during
tensile tests, which is of the same order of magnitude as in [20] on homoge-
neous material). To the authors’ knowledge, no other published results are
available in the literature to compare identified moduli onto bilayer materials
to tensile values on the same material.

The proposed method is expected to hold for any other stiffness ratios,
even if, in this contribution, only two controlled silicone mixes R1 and R0 were
used experimentally; the stiffness ratio ER1

ER0
≈ 8.3 was identical for all suction

phantoms A to E, which corresponds to a unique curve of the FE database
(equation 10, appendix A). The experimental curves overlap in the plot of
Bij exp versus the ratio Di

LR1 pic
(figure 8 b) confirms that this uniqueness of

stiffness ratio is actually observed experimentally with the suction tests; this
is a qualitative assessment of the measurement quality of both Bij exp and
LR1 pic. Depending on the layer thickness LR1, the aperture diameters from 4
to 30 mm extract different parts of the total theoretical curve (figure 8 a and
b).
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The method has also been successfully applied in vivo to the abdominal
tissue of a healthy volunteer. Young’s moduli identified on the skin (dermis
and epidermis) and on the subcutaneous fat were of 54 ± 1 kPa and 4.8 ±
0.1 kPa, respectively (stiffness ratio η = Eskin

Efat
= 11.25). Seven main points

are discussed before comparing these results with the literature.
First, the in-vivo tissue pressure-volume curves show almost linear be-

haviour (figure 7 a) and no loading history dependence (figure 7 b) for shapes
Stissue smaller than 0.1. The similarities between the tissue and silicone phan-
tom pressure-volume curves are striking (figures 6 and 7 a). Therefore, it is
assumed that the method remains valid (as demonstrated on the silicone phan-
toms) for these in-vivo tissues.

Second, compared to silicone phantoms A (Young’s moduli of 74 and 9 kPa,
ratio of η = 8.3), the abdomen tissue is softer, which is in accordance with
palpation. It should also be noted that the total thickness of the dermis, epider-
mis, and fat is approximately of 24 to 29 mm in this case (figure 5 b, table 2).
The maximum aperture diameter being of Di = 30 mm, the lower layer me-
chanical properties identification (4.8 kPa) shall be slightly affected by the
mechanical properties of the muscle located under the fat. The amount of this
impact has not been evaluated in this work, but it can be related to sensitivity
evaluations reported in previous publications [12, 33, 40] where such influence
was neglected. Other sensitivity studies can be found in the literature, such as
on contact force [28], for example.

Third, the thickness of the upper layer (dermis + epidermis) was evaluated
in vivo on the abdominal tissue. It was found to be of 2.21± 0.033 mm using
Bmode ultrasound imaging (natural contrast between the epidermis and fat,
figure 5 a). Additionally, the best bilayer model that explains the experimental
suction data has an upper layer thickness of 2.15 ± 0.05 mm (table 5). The
agreement between both methods (difference lower than 3%) provides a dou-
ble validation: on the one hand, it shows that the layer thickness identified
with the Bmode ultrasound approximately behaves as a single homogeneous
upper layer during suction experiments. On the other hand, it indicates that a
bilayer model is well adapted to describe suction on the skin of the abdomen
with an suction diameter range from 4 to 30 mm. This result corroborates
similar assumptions made in [40] and using ultrasound or magnetic resonance
measurements of the skin thickness. This eventually also gives confidence in the
Young’s moduli identified simultaneously with the suction method. Further-
more, the optimal thickness of the upper layer is slightly smaller (difference
of 0.06 mm) than the thickness of the total skin. This result, if confirmed,
could be related to the presence of a thin and soft upper layer (neglected in
this contribution) identified in [26] as the epidermis and papillary layer (of
0.130 to 0.153 mm for total thickness of 1.19 and 0.97 mm, i.e. 10 to 16% of
the total skin layer). This very thin upper layer was about 1500 times softer
than the reticular dermis [26]. More studies would be required to confirm this
observation.

Fourth, the experimental variances identified with both the classical and
AUE methods σ2

i classic and σ2
i AUE are almost identical for the application
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in vivo (figure 11 d). It means that almost no bias was observed during the
in vivo measurement and that the bilayer model adequately explains the ex-
perimental data. The experimental variances σ2

i AUE are smaller than 8.10−3,
which is indeed much smaller than 1 (equation 7). The residual norms Φ0

are lower than their associated threshold value of χ2
df 95% for the P = 2 and

P = 3 parameter models (figure 11 b). Much more experimental data would
be necessary to verify that residual norms Φ0 statistically follow the predicted
chi-square distribution.

Fifth, the proposed CIs are related but should not be confused with error
bars; the CIs answer the question ”Where would another result be identified
(with a 95% level of confidence) if the measurement was repeated with exactly
the same configuration (number of points, inter and intra reproducibility) and
with the same experimental variances σ2

i AUE ?”. Therefore, CIs have the same
meaning as standard deviations. This partly explains why the tensile reference
values are not always included in the computed CIs (figure 12). The computed
CIs are yet in good accordance with the ”ill-posedness” aspect of the tested
case: for both P = 2 and P = 3 parameters models (figure 12), the Young’s
moduli CI of the stiff silicone R1 decrease as the layer thickness increases. This
accounts for a better identifiability of the upper layer when all the suction di-
ameters are of the same order of size than the upper layer thickness, which is in
accordance with [12]. The opposite is observed for the lower softer silicone R0:
CIs increase with the thickness of the upper layer. The mechanical behaviour
of the upper layer increasingly shields the extraction of the mechanical proper-
ties of the lower layer. To the authors’ knowledge, previous works only propose
to compute CIs using repeatability [12, 40], comparing different measurement
sites, or between subjects [25, 28]; this is the first time that real-time CI eval-
uation has been implemented for suction method on bilayered materials. This
was possible here first by estimating the experimental variance with the AUE
(including possible bias effect) and second by using the real-time simulation
using the FE database interpolation.

Sixth, the CIs of P = 3 models are greater than for P = 2 for both the
upper and lower identified Young’s moduli. From a practical point of view,
knowing the thickness of the upper layer is therefore not mandatory but can
improve the final results (especially if the upper layer thickness can be ac-
curately measured). This is a direct improvement of the method proposed
in [12] where it was simply proposed to decrease the suction diameter until
the apparent stiffness of the bilayer material converges.

Seventh, measurements were made from small to large cups on the abdom-
inal tissue. Due to the ultrasound gel cord, the skin was therefore inevitably
and gradually moisturised by the ultrasound gel, which may have progres-
sively decreased the Young’s modulus of the upper skin layer [47, 48]. The
influence of the skin’s relative humidity has not been further studied in this
contribution.

As testified in reviews of the literature [40, 49–51], The mechanical prop-
erties of human skin are often measured on forearm or face, more rarely on
the back, thigh, calf, abdomen, and fingertips. Direct comparisons between
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studies are hazardous as the experimental conditions on the one hand (test-
ing methods, in or ex vivo, applied deformation and pressure range, loading
speed, measurement location, relative humidity, subject age, etc) and inverse
identification procedure on the other hand (constitutive model formulation, FE
models and boundary conditions for inversion, definition of the layers based on
histological composition, etc) significantly impact the reported values. Demon-
strating the method abilities on reference phantoms was mandatory.

No data has been found in the literature on in vivo identification in the
region of the abdomen. However, the identified elastic modulus for the skin
(54± 1 kPa) is in full agreement with the ranges reported in the literature for
human skin (0.6 to 2 160 kPa) in different locations (upper layer not including
the fat) during in-vivo or ex-vivo tests (table 6).

Some references on the mechanical properties of adipose tissue are reported
in table 7. Most identifications are obtained onto breast samples. Note that in
this table, the reported Young’s moduli identified using suction are qualified
as ”rough” or ”preliminary”. The range of Young moduli for adipose tissue is
from 0.12 to 29.2 kPa in the literature, the usual results being of few kPa. The
elastic modulus for the fat identified in this contribution (4.8± 0.1 kPa) is in
perfect agreement with this range.

This study comes with some limitations with respect to the proposed hard-
ware design, the experimental protocol, and the identification method. These
limitations are discussed in the following and call for future work.

Regarding hardware, the main limitation is that the same volume∆Vsyringe

is cyclically withdrawn from the ’tissue circuit’ for all aperture diameters Di.
This volume cannot be easily modified during a measurement session. The
chosen volume of 0.1 mL in this study implied that the in-vivo pressure-shape
curves (figure 7 a) showed almost no non-linear behaviour for shapes smaller
than 0.1. However, it would be advisable for future studies to be able to adjust
the withdrawn volume ∆Vsyringe depending on the used suction diameter.
This feature would enable to observe and, hopefully, to identify the stiffening
parameters of the tested tissues.

Regarding the protocol, the suction cup should be used on a flat surface and
held in place with the lowest possible initial load. In any other case, the tissue
sample will initially be curvaceous in the suction chamber, as also mentioned
and corrected in [28]. In this contribution, initially curvaceous surfaces would
modify the reference air quantity in the system and the associated calibration
curve; a bias would be added to the experimental result. This is probably what
happened during the experiments on the homogeneous soft phantom R0 (fig-
ure 8) where no stiff superficial layer stabilised the initial shape. Furthermore,
surface local curvature shall affect airtightness for large aperture diameters,
preventing their use. Eventually, performing measurements in vivo shall pro-
vide data with more noise (breathing, muscle activation, etc) averaged over
the cycles. The impact of these phenomena on the entire identification process
should be better evaluated in future studies.

In this work, the developed experimental in-vivo process took about 15 min-
utes for each aperture diameter (including setting, thermal stabilisation, re-
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’Skin’ Ref
In/Ex

vivo
Site

Thickness

(mm)
Method Comment

Elastic

modulus

(kPa)

Age

Connesson 2022 In Abd 2.15− 2.21 Suction 9Di[4− 30], Vol 54± 1 38

Jansen 1958 [52] Ex Abd 0.9-1.9 Tension σ ∈ [0 490] kPa 1080− 2 160 0− 90

Silver 2001 [53, 54] Ex Abd/Tho − Tension λ1 ∈ [1 1.4] 100 47− 86

Diab 2019 [9] Ex Abd 2.9− 4 Bulge Lanir model 0.6− 7.5 51− 65

Annaidh 2012 [55] Ex Back 1.78− 3.34 Tensile 540− 1 950 81− 97

Tongue 2013[8, 56] Ex Back 2− 4.8 Bulge 14.3− 67.9 43− 83

Diridollou 2000 [24] In FA 0.9− 0.95 Suction 1Di[6], US 41− 217 20− 30

Hendriks 2003 [25] In FA 1.21− 1.51 Suction 1Di[6], US 29− 102 19− 24

Barel 2006 [57] In Various − Suction 1Di[2], Cam 130− 260 -

Barbarino 2011 [40] In Face 1.6− 1.8 Suction 2Di[2, 8], Cam 19− 25 30

Weickenmeier 2015 [33] In Face 1.7 Suction 2Di[2, 8], Cam 6.96 29

Muller 2020 [28, 58] In Divers 1.2 Suction 1Di[6], Stop 6.9− 17.42 -

Lakhani 2021 [36] In FA 1.1− 1.25 Suction 1Di[30], Cam 520− 590 31− 36

Agache 1980 [59] In FA 1 for all Torsion Torque imposed 420− 850 3− 89

Khatyr 2004 [60] In FA − Tension 130− 660 22− 68

Pailler-Mattei 2008 [61] In FA 1.2 Indent 4.5− 8 30

Zahouani 2009 [62] In Arm − Indent 2.1− 6.2 55− 70

Jackowitcz 2007 [63] In Face/FA 1.5 Indent 7− 33 28− 65

Table 6 Young’s moduli reported in literature for human ’skin’ tissue and low deformation.
Equivalent Young’s moduli are derived from the mechanical parameter reported in each
reference, and considering incompressible materials when performing conversions under
small deformation (E = 3µ where µ is the reported shear modulus, E = 6C10 where C10 is
the classic material parameter used in strain energy function based on the first invariant of
the Finger strain tensor, etc). The similarities between this contribution and literature are
represented with gray colour.
In=In Vivo, Ex=Ex Vivo, Abd=Abdomen, Tho=Thoracic, FA=ForArm, In-
dent=Indentation.
When using suction, the number of diameters Di and range in mm are reported in com-
ments along with measurement techniques (Vol=Volume, US=Ultrasounds, Cam=Camera,
Stop=Mechanical stop.
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’Fat’ Ref Type Site Label Method Comment

Elastic

modulus

(kPa)

Connesson 2022 In Abd Adipose Suction 9Di[4− 30] Vol 4.8± 0.1

Patel 2005 [64] Ex Abd Adipose Torsion Strain 1%, f = 3 Hz 3.9− 6

Sommer 2013 [65, 66] Ex Abd Fat Multiaxial Fitted in [66] 0.79

Hendriks 2003 [25] In FA Fat Suction 1Di[6], US 0.12

Barbarino 2011 [40] In Face SMAS + SupF Suction 2Di[2, 8] Cam 2.4− 3.87

Weickenmeier 2015 [33] In Face SMAS Suction 2Di[2, 8] Cam 0.17

Muller 2018 [58] In Divers Subcutaneous Suction 1D(6) Stop 0.084

Weaver 2005 [67] In Foot Fat pad MRE 22.5− 29.2

Pailler-Mattei 2008 [61] In FA Hypodermis Indent 2

Lawrence 1998 [68] In Breast Fat MRE f = 50− 100 Hz 0.87− 1.71

McKnight 2002 [69] In Breast Adipose tissue MRE f = 100 Hz 2.8− 17

Lorenzen 2002 [70] In Breast Fatty tissue MRE f = 65 Hz 0.5− 4

Van Houten 2003 [71] In Breast Fat MRE 14− 27

O’Hagan 2009 [72] Ex Breast Fat necrosis Indent 4.2

Samani 2004 [73] Ex Breast Adipose tissue Indent 1.5− 2.2

Samani 2007 [10] Ex Breast Normal Fat Indent 1.43− 5

Table 7 Young’s moduli reported in literature for human fat/adipose tissue.
SMAS= In=In Vivo, Ex=Ex Vivo Superficial Muscular Aponeurotic System,
SupF=Superficial Fat, MRE= Magnetic Resonance Elastography, When using suction, the
number of diameters Di and range (in mm) are reported along with measurement techniques
(Vol=Volume, Stop=Mechanical stop, Cam=Camera, US=Ultrasounds).

peatability measurement, and removal). The whole experimental process, in-
cluding 9 different cups, is obviously still too time-consuming for direct routine
clinical application. Therefore, the experimental protocol will need further sim-
plification, for example, by reducing the number of required suction diameters,
reproducibility cycles, etc. These points will be evaluated during further work
so as not to compromise the performance of the method.

Regarding the inverse analysis procedure, the thickness of the bilayer tissue
is considered to be higher than the biggest aperture diameter (Di = 30 mm
in this contribution). Such a configuration should be satisfied experimentally,
which will naturally be the case, for example, for breast or abdominal tis-
sue. For tissues of smaller thickness, the protocol can be applied excluding
the larger suction diameters. In future work, the FE database will also be
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adapted to accommodate other bottom boundary conditions to account for
the mechanical influence of muscle or bone beneath the bilayer tissue.

The quality of CI evaluation directly depends on the correct identifica-
tion of the experimental variances σ2

i AUE (equation 16, appendix B). Unfor-
tunately, their identification is very sensitive to bias and usually requires the
acquisition of many data (repeatability). This requirement could be difficult
to achieve during clinical applications. Using the AUE tool partly fixes this
difficulty, but more work should be done to evaluate typical experimental vari-
ances depending on the location on the body (breathing, muscle activation,
etc).

5 Conclusion

A new suction system has been developed. It is based on the application of a
partial cyclic vacuum to the tested tissue to evaluate its apparent mechanical
properties at moderate tissue strain. The system suction head can be easily
switched for aperture diameters Di between 4 and 30 mm. The developed iden-
tification method enables, almost in real-time, to identify mechanical Young’s
moduli and the upper layer thickness of bilayered structures interpolating an
off-line finite element database. Confidence intervals inferred from the mini-
mized cost function are also provided.

The system was tested on controlled bilayer phantoms for upper layer thick-
ness from 1 to 12 mm. The bilayer phantom with an upper layer of 3 mm
presented the best parameter identifiability for both Young’s moduli (relative
errors lower than 10% compared to reference values obtained during tensile
tests). The upper layer thickness was also identified with an error lower than
2%. For other upper layer thickness, identified results were of the proper or-
der of magnitude. The obtained indifferences regions in each case were repre-
sentative of the identification quality and ”ill-posedness” of the experimental
situation.

The method has been applied successfully in vivo to the abdominal tissue of
a healthy volunteer. The thickness of the upper layer (dermis + epidermis) was
evaluated to be 2.21 mm using Bmode ultrasound imaging and 2.15±0.05 mm
with the suction method. The identified Young’s modulus was 54 kPa on the
skin (dermis and epidermis) and 4.8 kPa on the underneath fat. These pre-
liminary results are in good agreement with the literature and give confidence
for future applications.

In future work, the authors intend to apply the VLASTIC method to es-
timate the mechanical properties of the most accessible soft tissues, such as,
for example, skin and fat stiffness for breast [74], abdomen, face [75, 76],
sacrum [77] or foot [78].
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Fig. 1 Subplot a) Principle of the two circuits system to evaluate the material mechanical
answer of soft tissues during cyclic suction.
Subplot b) Syringes cyclic actuator with adjustable screw-driven eccentric and homing
sensor.
Subplot c) Suction cups with aperture diameters ranging from 4 to 30 mm.
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Fig. 2 Subplot a) Schematic of the tissue circuit at the initial time t0 and t: definition
of volumes ∆Vtissue i, ∆Vsyringe and ∆Vsystem i. The room ∆Vsyringe test made into the
system thanks to the syringe is filled in part by the volume of aspirated tissue ∆Vtissue i

and in part by the expansion of the air and the reduction of the volume of the system
∆Vsystem i.
Subplot b) Schematic pressure-volume curves during calibration measurement (green
dashed curve) or with a soft tissue tested (blue continuous curve). The tissue pressure-
volume curve is the difference between the total and calibration curves at the same pressure
(red dashed curve).
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Fig. 3 Illustration of suction on a bilayer phantom using different aperture diameters for
Stissue = 1. The colours under the cups schematically represent the material volume over
which the material stiffness information is extracted. Changing the suction diameter Di

modifies the relative contribution of the upper layer to the final shape Stissue (subplots a
to b).
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Fig. 4 Subplot a) Homogeneous (R0 and R1) and bilayered suction phantoms (A to E)
made with stiffer R1 silicone as upper layer (white) and softer R0 silicone as bottom layer
(pink).
Subplot b) Tensile test results on flat rectangular specimens (40 × 160 × 3 mm3). Softer
R0 silicone (red curve) and stiffer R1 silicone (black curve). Associated Neo-Hookean curve
fitting (blue) using data over the domain for λ1 = L

L0
∈ [1, 1.1].
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Fig. 5 Subplot a) Illustration of Bmode imaging on the upper structures of the abdomen
tissue of the volunteer (Aixplorer, probe SuperLinear� SLH20-6). From top to bottom, the
ultrasound gel is first visible in black (no direct contact between the probe and the skin),
then the dermis and epidermis are visible in white, and then the fat underneath. The upper
layer thickness is measured directly using the firm ultrasound software.
Subplot a) Illustration of Bmode imaging on fat and muscle of the abdomen tissue of
the volunteer (Aixplorer, probe SuperLinear� SL10-2). From top to bottom, the ultrasound
gel is first visible in black, then the dermis and epidermis in white, then fat and muscle
underneath.
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Fig. 6 Subplot a) Example of tissue pressure-volume curves (∆Ptissue test − ∆Vtissue i)
obtained on phantom A for each aperture diameter Di. Curve parts in colour were selected
to evaluate the Bij EXP derivatives with a polynomial of degree 1. The selected parts of the
curve correspond to the shape range the closest possible to S ∈ [0.05 0.15].
Subplot b) Bilayer material apparent stiffness Bij versus aperture diameter Di extracted
for phantom A. The value Bij EXP presented in colour corresponds to the tissue pressure-
volume curves (∆Ptissue test −∆Vtissue i) in figure 6 a.
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Fig. 7 Subplot a) Example of tissue pressure-volume curves (∆Ptissue test − ∆Vtissue i)
for each aperture diameter Di obtained in-vivo on the abdomen tissue of a healthy volunteer
(38 years old, body mass index of 25.4). Curve parts in colour were selected to evaluate the
Bij EXP derivatives with a polynomial of degree 1. The linearity of the curves is considered
acceptable in this in-vivo case. The selected parts of the curve correspond to the shape range
the closest possible to S ∈ [0.05 0.15].
Subplot b) Bilayer material apparent stiffnessBij versus aperture diameterDi extracted on
the abdomen tissue. The value Bij EXP presented in colour corresponds to tissue pressure-
volume curves (∆Ptissue test −∆Vtissue i) during the first cycle in figure 7 a.
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Fig. 8 Experimental results Bij exp on each bilayered and homogeneous silicone phantoms.
The solid lines join the average obtained for each aperture diameter Di.
Subplot a) Experimental results Bij exp versus aperture diameter Di. The layer stiffness

ratio ER1
ER0

is the same for all phantoms A to E as the same material mix was used to create

all phantoms. Therefore, the experimental differences between the phantoms are due to the
variation in the thickness of the upper layer LR1 (table 2).

Subplot b) Experimental results Bij exp versus ratio Di
LR1 pic

where LR1 pic is evaluated

during annex destructive measurements. The layer stiffness ratio ER1
ER0

is the same for all

phantoms A to E, as highlighted by the experimental results overlap in this plot.
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Fig. 9 Computation of a P = 2 parameter model over all the data on silicone phan-
toms to evaluate the experimental variance σ2

i AUE . The results for each phantom are pre-
sented with a different colour and marker type. The optimal parameters for this fitting are
ER1 all = 83.2 kPa and ER0 all = 9.82 kPa.
Subplot a) Input experimental data Bij versus aperture diameter Di. Simulated curves
(in black) fitted over the data with the optimal parameters (ER1 all = 83.2 kPa, ER0 all =
9.85 kPa) and the layer thickness LR1 pic of each phantom.
Subplot b) Input experimental data Ln(Bij) versus aperture diameter Di. Logarithm of
the fitted simulated curve (in black) using the optimal parameters ER1 all = 83.2 kPa,
ER0 all = 9.85 kPa and the layer thickness LR1 pic of each phantom.
Subplot c) Residual error vector uij using the optimal parameters ER1 all = 83.2 kPa,
ER0 all = 9.85 kPa and the layer thickness LR1 pic of each phantom.
Subplot d) Identified experimental variance σ2

i AUE using the residual error vector uij

(equation 9) presented in subplot c). The variance σ2
i Classic computed with equation 15 (ap-

pendix B) and the same set of data is also reported.
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Fig. 10 Experimental data and inverse identification on experimental data of phantom B.
Subplot a) Experimental bilayer apparent stiffness Bij EXP for phantom B versus aperture
diameter Di. The best fitted curves are plotted along with the areas containing the curves if
the parameters sweep the P -dimensional IR at 95% level of confidence presented in subplots
d) and e). For homogeneous phantoms, the values of Bi SIM would be independent of the
aperture diameter Di. Such cases are represented as dashed horizontal lines corresponding
to the optimal identified upper and lower material Young’s moduli (ER1 opt and ER0 opt

with P = 2 and P = 3).
Subplot b) Experimental bilayer apparent stiffness Ln(Bij EXP ) for phantom B versus
aperture diameter Di. The best fitted curves are presented along with the areas containing
the curves if the parameters sweep the P -dimensional IR at 95% level of confidence presented
in subplots d) and e). The residual norm Φ0 for P = 2 and P = 3 are both lower than the
threshold at 95% of the associate chi-square law.
Subplot c) Weighted residual error vectors eij = wiuij (equation 9) for both P = 2 and
P = 3-parameters models. Note that the variances of errors eij are similar for each diameter
Di due to the use of the weighting factor w2

i = 1/σ2
i AUE . The hypothesis of a disturbance

with no bias (zero mean) is not perfectly met here, explaining the need to evaluate the
variance with the AUE estimator.
Subplots d) The markers represent the optimal identified Young’s moduli ER1 and ER0

for models with P = 2 and P = 3. The IR at 95% in the cases P = 2 assuming a perfectly
identified layer thickness LR1 pic = 3.27 mm (table 2) is presented as a green area with
a chessboard pattern. When the layer thickness sweeps its identification range LR1 pic =
3.27 ± 0.05 mm, the IR is a sum of different ellipses describing the blue area with the line
pattern. The IR at 95% in the cases P = 3 is presented as the homogeneous red area.
For each area, the corresponding CI at 95% computed with equation 14 (appendix B) are
presented with corresponding colour errorbars. Such a good overlap of the areas is not met
for all phantoms and depends on the closeness between the optimal layer thickness LR1 and
the actual layer thickness LR1 pic.
Subplots e) The markers represent the optimal identified Young’s moduli ER1 versus the
layer thickness LR1. The associated indifference regions are plotted in the cases P = 2
(assuming a layer thickness LR1 pic = 3.27 ± 0.05 mm, table 2) and P = 3, respectively.
The corresponding CI at 95% computed with equation 14 (appendix B) are presented with
corresponding colour errorbars.
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Fig. 11 In-vivo experimental data and inverse identification on the abdomen tissue of a
healthy volunteer.
Subplot a) Experimental bilayer apparent stiffness Bij EXP in the abdomen versus aper-
ture diameter Di. The best fitted curves are plotted along with the areas containing the
curves if the parameters sweep the P -dimensional IR at 95% level of confidence presented
in subplots e) and f).
Subplot b) Experimental bilayer apparent stiffness Ln(Bij EXP ) on the abdomen versus
aperture diameter Di. The best fitted curves are presented along with the areas containing
the curves if parameters sweep the P -dimensional IR at 95% level of confidence presented
in subplots e) and f). The residual norm Φ0 for P = 2 and P = 3 are both lower than the
threshold at 95% of the associate chi-square law.
Subplot c) Weighted residual error vectors eij = wiuij (equation 9) for both P = 2 and
P = 3-parameters models. Note that the variances of errors eij are similar for each diameter
Di due to the use of the weighting factor w2

i = 1/σ2
i AUE .

Subplots d) Identified experimental variance σ2
i AUE using the residual error vector uij

(equation 16, appendix B). The variance σ2
i Classic calculated with equation 15 (appendix B)

is also reported. The hypothesis of a disturbance with no bias (zero mean) is not perfectly
met here as both variances are not perfectly overlapping.
Subplots e) The markers represent the optimal identified Young’s moduli Eskin and Efat

for models with P = 2 and P = 3. The IR at 95% in the cases P = 2 assuming a per-
fectly identified layer thickness LskinUS = 2.21 mm (table 2) is presented as a green
area with a chessboard pattern. When the layer thickness sweeps its identification range
LskinUS = 2.21 ± 0.033 mm, the IR is a sum of different ellipses describing the blue area
with the line pattern. The IR at 95% in the cases P = 3 is presented as the homogeneous red
area. For each area, the corresponding CI at 95% computed with equation 14 (appendix B)
are presented with corresponding colour errorbars.
Subplots f) The markers represent the optimal identified Young’s moduli Eskin versus
layer thickness Lskin. The associated indifference regions are plotted in the cases P = 2
(assuming a layer thickness LskinUS = 2.21± 0.033 mm, table 2) and P = 3, respectively.
The corresponding CI at 95% computed with equation 14 (appendix B) are presented with
corresponding colour errorbars.
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Fig. 12 Experimental indifference ranges on phantoms A to E.
Subplot a) Identification ranges for the upper layer R1 using a P = 2 or P = 3-parameters
model. The horizontal black band represents the region of indifference of the tensile test at
95% (average ± 2 Std) on silicone R1. The horizontal red band represents the 95% indiffer-
ence region on suction using a P = 1-parameter model on the homogeneous phantom R1.
Subplot b) Identification ranges for the lower layer R0 using a P = 2 or P = 3-parameters
model. The horizontal black band represents the tensile test indifference region at 95% (av-
erage ± 2 Std) on silicone R0. The horizontal blue band represents the 95% indifference
region on suction using a P = 1-parameter model on homogeneous phantoms R0.
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A Real time evaluation of the simulated apparent stiffness

The apparent stiffness Bi SIM (β, θ) is the slope of the pressure-shape curve at shape S = 0.1
(equation 6, main paper body) when aspirating a bilayer phantom. This simulated stiffness
is evaluated many times to find iteratively the minimum of the cost function ΦParam (equa-
tion 8, main paper body) or to evaluate the identifiability of the material parameters (ap-
pendix B). The apparent stiffness Bi SIM (β, θ) depends mainly on the different combination
of four parameters, which are the aperture diameter Di, the upper layer Young’s modulus
ER1 and its thickness LR1, and the lower layer Young’s modulus ER0 (figure 3).

If the simulated apparent stiffness Bi SIM (β, θ) was evaluated using, for example, a FE
model implemented and updated for each calculation point, the time required to solve a
single inverse identification would be phenomenal. Therefore, this appendix describes how
the simulated apparent stiffness Bi SIM (β, θ) was evaluated in real time. The idea is mainly
to define and interpolate precalculated abacuses as discussed in [79].

Four main steps are required:

1. Reducing, if possible, the number of parameters required for the database (section A.1),
2. Defining a FE model for the suction experiment and creating the database in the required

parameter range (section A.2),
3. Interpolate the database for any parameters Di, LR1

, ER1 and ER0 (section A.3),
4. Validate the proposed method (section A.4).

A.1 Database definition

The four main parameters Di, LR1
, ER1 and ER0 can be combined to reduce the required

dimension of the FE database from 4 to 2.
Scale effect: assuming the lower layer thickness is infinite (in practice, the total thick-

ness of the layer is much larger than the aperture diameter Di), the upper layer relative

contribution to the shape Stissue is governed only by the depth ratio ζ = Di
LR1

between the

aperture diameter Di and upper layer thickness LR1
[12]; redundant depth ratio ζ provides

redundant information in the FE database.
Material stiffness contrast: considering a material stiffness contrast ratio η = ER1

ER0
,

the apparent stiffness Bi SIM (β, θ) can be seen as proportional to the bottom layer stiffness
ER0 (equation 10).

The required FE database to compute the apparent stiffness Bi SIM (β, θ) can thus be
reduced to evaluate a two-parameter function, fsim, so that:

Bi SIM (β, θ) = ER0 fsim(ζ, η) (10)

where fsim is an adimensional function depending on the depth ratio ζ = Di
LR1

and on the

layer stiffness contrast ratio η = ER1
ER0

.

Note that equation 10 implies that the cost function ΦParam (equation 8, main pa-
per body) is linearly conditional on the parameter ER0 [44]. It means that once ζ and η
are chosen, the parameter ER0 minimising ΦParam is simply obtained by solving a linear
problem.

The range of both the ratio parameters ζ and η were chosen to build the database, i.e.
to estimate the function fsim(ζ, η) :

• The chosen range for the stiffness contrast ratio η was from 1 to 120 to anticipate appli-
cation to in-vivo cases.

• Aspirating with an aperture of diameter Di extracts data mainly at a depth of one
diameter [12]. Let us consider the case where the layer thickness is greater than Di, i.e.
for example, LR1

> 3Di. A small increase of the layer thickness should have negligible

influence on the result in this case [12, 33, 40]. Therefore, a limit scale ratio ζ = Di
LR1

> 1
3

was chosen. Moreover, the smallest aperture diameter being of Di = 4 mm, it was
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decided that the identification of mechanical properties of layers thinner than 0.25 mm
would be out of the identification range of this work. The largest aperture diameter
being of Di = 30 mm, the maximum depth ratio ζ for such a thin layer is of 120.
Therefore, the range of the scale ratio ζ required in this work was [ 1

3
, 120].

A.2 FE model

A.2.1 Model definition

An FE model was parameterized using a Matlab code to provide fsim(ζ, η) for the chosen
ranges of ζ and η:

fsim(ζ, η) =
Bi SIM db

ER0 db
(11)

where Bi SIM db is the slope of the FE pressure-shape curve. To compute the database, an
arbitrarily chosen lower layer stiffness of ER0 db = 4000 Pa was used.

A static, implicit, axisymmetric model (ANSYS APDL) was defined to describe suction
onto cylindrical phantoms. The model takes into account large displacements. A constant
aperture diameter of Di = 10 mm was chosen (figure 13 a); the depth ratio ζ = Di

LR1

was changed by modifying the layer thickness LR1
. To allow the use of a unique mesh

for all simulations in the database, a geometry of M = 20 pre-meshed layers was defined
(figure 13 b). The ratio ζ = Di

LR1
was thus modified between simulations by attributing a

Young modulus of ER1 db to the first [1, m] upper-layers and a Young’s modulus of ER0 db to
the other layers in [m+1, M ]. The mesh used to compute the whole database was composed
of 6 bilinear axisymmetrical elements (Q8, Plane183, ANSYS) in each layer thickness. A
zoom-in of the mesh size is reported in figure 13 b.

Note that the parts of the 3D printed cups in contact with the tissue (wall thickness,
fillet radius) were all proportional to the cup aperture Di; the model cup geometry in contact
with the phantom is representative of the reality for all cup sizes.

The boundary conditions are presented in figure 13 a. The vertical line AG is the ax-
isymetric axis of the model; a single planar section of the model defines the whole model
geometry. The top of the suction aperture (line CD) is clamped in all directions. A partial
vacuum −∆Ptissue is applied to the line AB. Contact elements were defined between the
suction aperture and the line AB. With these boundary conditions, the whole tissue is free to
move up or down relatively to the cup, depending on the applied pressure −∆Ptissue. These
boundary conditions account for the fact that external loads applied on the cup were as small
as possible during the experiments (figure 4, illustration on phantom A). No additional ex-
ternal loads were taken into account in the simulations. Furthermore, the dimensions of
the phantom were large enough so that the application of a rigid casing outside the tissue
phantom (figure 13 a) had a negligible impact on the aspirated volume (numerically tested).

The material of aperture and, optionally of the rigid casing, were modelled with an elastic
Hookean model with steel mechanical properties. An incompressible Neo-Hookean model
simulated the material behaviour of each tissue layer. The apparent stiffness Bi SIM db was
evaluated at shapes equal to 0.1; for such a small deformation state, the incompressibility
of the material (Poisson coefficient ν ∈ [0.45 0.5[) did not influence the results (numerically
tested).

The friction coefficient between the tissue and the cup was chosen of f = 0.2. During
the experiment, this parameter was actually unknown and was affected by the ultrasound
gel cord. The influence of the friction coefficient has been tested numerically (no friction
to glued boundary conditions). Its effect was considered negligible (as also reported in [80])
when the upper layer is stiffer than the lower layer.

The model solution was computed for an initial small partial vacuum −∆Ptissue. The
2D displacement of line AB was converted by numerical integration into the simulated vol-
ume Vtissue aspirated into the cup. This volume was normalised into shape Stissue (equa-
tion 4, main paper body). The partial vacuum −∆Ptissue was gradually and monotonically
increased. The output result needed to include the shape Stissue = 0.1 to be validated
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(figure 14 a). The results obtained around this reference shape were used to compute the
sought slope Bi SIMdb, which provided in turn the adimensional value fsim (equation 11,

illustration in figure 14 b for η = ER1
ER0

= 120).

The FE database was calculated on stiffness ratios ranges: η = ER1
ER0

∈ [1, 120] and

ζ = Di
LR1

∈ [ 1
3
133] (figure 15).

A.2.2 Mesh convergence

To be trustworthy, the database results should be independent of the mesh used. To test this
point, a specific curve of the simulation output fsim is presented for 6 meshes with different
sizes. Mesh 1 is the coarsest mesh, with only 1 elements in each pre-meshed layer thickness
(6 561 elements in the tissue). The number of elements in each pre-meshed layer thickness is
progressively increased up to 6 elements (65 918 elements in the tissue). The thinnest mesh
is noted Mesh 6 (figure 13 b).

The case with the stiffness contrast ratio η = ER1
ER0

= 120 was considered to be the most

demanding case, i.e. inducing stress concentrations that could most affect the results. The
curve of interest fsim is presented in figure 14 b for all 6 meshes. At first sight, all the results
overlap. A closer inspection (zoom-in figure 14 b) confirms that the curves obtained for all
6 meshes are slightly different. The convergence of this curve is illustrated in figure 14 c
for different depth ratios ζ = Di

LR1
and taking the output curve of Mesh 6 as reference to

compute relative variations. Therefore, the variations between Mesh 1 and 6 are less than
2% even if the total number of elements is multiplied by 10. Mesh 6 is considered converged
and has been used to compute the entire database.

A.3 Database interpolation

The database (figure 15) was analysed using the Principal Component Analysis (PCA)
method (based on the well known Singular Value Decomposition method). For a detailed
description of the model reduction using the PCA method, the reader is kindly referred
to [81]. Only the 3 first eigenvectors and associated weighting functions were kept, repre-
senting more than 99.99% of the database information:

fsimPCA(ζ, η) = fsim0 +

3∑
p=1

αp(η) Vp(ζ) (12)

where Vp(ζ) are the three first PCA normalised eigen vectors and αp(η) are the associated
weighing functions. fsim0 = 0.7885 is the FE output for a stiffness ratio η = 1 subtracted
from the database prior to PCA. The eigen vectors Vp(ζ) and their spline interpolation are
presented in figure 16 a. The weighing functions αp(η) are presented in figure 16 b and c.
Note that the database is dominated by the first weighing function α1(η) and associated
first eigen vector V1(ζ); the simulated value fsimPCA is mainly proportional to the first
eigen vector V1(ζ).

Database interpolation results using the PCA is presented as black continuous curves
in figure 15. Although each point of figure 15 required to solve a FE model for different
partial vacuums −∆Ptissue, the interpolation of the whole database requires only the in-
terpolation of the eigen vectors and weighing function in equation 12. Also note that any
other interpolation scheme could have been chosen to interpolate the FE database.

A.4 Validation

To validate the apparent stiffness Bi SIM (β, θ) predicted by the PCA interpolation (equa-
tions 12 and 10), additional tests were performed. Seven FE models were created with
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Di

(mm)

LR1

(mm)
ζ = Di

LR1

ER0

(kPa)

ER1

(kPa)
η = ER1

ER0

fsimPCA

(No unity)

Bi SIM PCA

(kPa)

Bi SIM FE

(kPa)

RE

(%)

D 4 8 0.5 14 49 3.5 2.74 38.628 38.367 0.68

@ 6 6 1 10 135 13.5 10.4 104.89 103.99 0.87

C 8 3.47 2.3 12 282 23.5 13.82 166.92 165.92 0.60

♢ 10 3.23 3.1 9 301.5 33.5 14.48 130.84 130.36 0.37

B 12.5 2.78 4.5 11 478.5 43.5 10.60 117.68 116.61 0.92

9 20 2.94 6.8 13 695.5 53.5 6.31 82.785 82.090 0.85

A 25 2.17 11.5 5 317.5 63.5 3.22 16.266 16.110 0.97

Table 8 Comparison between the apparent stiffness computed by interpolating the PCA
analysis (Bi SIM PCA) or with a FE model (Bi SIM FE) implementing the exact parameters
Di, LR1

, ER1 and ER0. The data input and output for the FE models are highlighted in
light grey. The data input and output for the PCA estimation are highlighted in darker grey
(equation 12). For illustration, the particular interpolated points for fsimPCA are plotted
in figure 15 using the markers reported in first column.

overmeshed models (200 elements in diameter Di) and implementing the exact parameters
Di, LR1 , ER1 and ER0. The other parameters of the model were kept similar to the ones
used to compute the whole database.

The input parameters and the associated apparent stiffness results by direct FE sim-
ulation or PCA interpolation (Bi SIM FE and Bi SIM PCA, respectively) are reported in
table 8. Note that both the dimension ratio ζ and the stiffness ratio η were chosen so as not
to be directly represented in the database (figures 16 and 15). For all tests performed, the
relative error between the PCA and the direct FE model is less than 1%, which is considered
to be fully satisfactory.
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Fig. 13 Axisymmetric FE model.
Subplot a) Geometry, boundary conditions, and main dimensions. The nodes of the CD
line are completely clamped. Line AG nodes cannot move horizontally and are free in the
vertical direction to account for the axisymmetric conditions. A partial vacuum homogeneous
pressure−∆Ptissue is applied to the AB line and is represented by the green area and arrows.
Contact elements are defined between the line AB and the suction aperture. Note that with
the defined boundaries conditions, the suction cup is fixed and the tissue can freely move up
and down into the suction aperture under partial vacuum −∆Ptissue. This set of boundary
conditions ensures that load between tissue and suction aperture is only due to the cup
internal pressure; no external normal or shear loads are added to the model.
Subplot b) Local mesh zoom in: pre-meshed layers are defined at different depths (LR1

=
{0.075, 0.3, 0.67, 1.2, 1.8, ...}) to use the same converged mesh for all calculations in the
database (six Q8 element minimum in each layer thickness, noted Mesh 6). The mechanical
property of the material E1 is applied to the elements of the upper pre-meshed layers
(illustration of the layer thickness LR1

= 1.2 presented as a darker gray, i.e. a ratio ζ =
8.3,m = 4).
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Fig. 14 Mesh convergence demonstration for a specific database curve fsim.
Subplot a) Pressure-shape curves obtained for the thinnest mesh (Mesh 6), for a stiffness

ratio η = ER1
ER0

= 120 and different values of the depth ratio ζ = Di
LR1

.

Subplot b) Simulation output curve fsim for a stiffness ratio η = ER1
ER0

= 120. The output

curves for 6 different meshes (from coarse to thin) overlap in this plot. Local zoom-in for a

depth ratio ζ = Di
LR1

= 3.7 illustrates convergence with mesh refinement.

Subplot c) Relative variations of fsim for meshes 1 to 6 (total number of elements in the
model multiplied by 10) using the results of Mesh 6 as reference.
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Fig. 15 The FE normalized results fsim (equation 11) in the database are represented

as coloured point markers versus depth ratio ζ = Di
LR1

. The stiffness ratios range is η =

ER1
ER0

∈ [1, 120]. Interpolation of the PCA eigen vectors and weighing functions enables

interpolation of the database (equation 12), as presented with the black curves joining the

point markers. Integer values of depths ratio Di
LR1

are visually represented under the abscissa

axis. Illustrations of particular interpolated points fsimPCA (equation 12) used to compute
the values Bi SIM PCA in table 8 are also reported as specific markers. Consult table 8 for
corresponding legend.
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Fig. 16 PCA three first eigen vectors and weighing functions representing the FE database
(equation 11). Illustrations of particular interpolated points on the eigen and weighing func-
tions to compute fsimPCA (equation 12) and Bi SIM PCA (equation 10) in table 8 are also
reported in this figure as specific markers. Consult table 8 for corresponding legend.
Subplot a) Three first normalised eigen vectors and associated interpolation with splines.
Subplot b) Pondering functions α1 and spline interpolation.
Subplot c) Pondering functions α2 and α3 and spline interpolation.
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B Parameters’ identifiability and experimental variance

As mentioned in the main body of the paper, choosing weights w2
i representative of the

experimental variance σ2
i is important if the parameter identifiability is directly inferred

from the cost function ΦParam (equation 8, main paper body). This appendix develops the
mathematical approach chosen to evaluate the parameter identifiability and the variance
estimation derived from the residual vector uij .

B.1 Parameters’ identifiability

The parameter identifiability under heteroscedastic variance is usually computed using dif-
ferent variance–covariance estimators [42, 43]. In this work, a classic variance-covariance

matrix V̂ WLS is used [43]:

V̂ WLS =

[
FT

(
β̂
)
F
(
β̂
)]−1

(13)

where F
(
β̂
)
is the Nm×P Jacobian matrix of the function wi Ln

(
Bi SIM (β, θ)

)
(equation 8,

main paper body) evaluated at β = β̂ . The variance-covariance matrix V̂ WLS is of dimen-
sion P ×P and is a linear approximation of the inverse of the Hessian matrix of ΦParam. Its
graphical representation is an hyperelipsoid of dimension P known as Indifference Regions
(IR). In this work, IR with a confidence level of 95% will be plotted.

With this approximation, the Confidence Interval (CI) for parameter β̂ is computed
as [43]:

βpCI = β̂p ± zα/2

√
diag(V̂ WLS)p (14)

where β̂p is the pth element of β̂ and zα/2 is the cumulative distribution of a normally
centered distribution function for a confidence level α.

Note that the particular residual error vector eij = wiuij , which is the residual value
for a specific noise copy ϵij , is not taken into account to compute the variance-covariance

matrix V̂ WLS (equation 13). The variances and associated weights wi, taken into account
while computing the Jacobian matrix F of wi Ln

(
Bi SIM (β, θ)

)
, must be properly estimated

so that the calculated CIs are meaningful.

B.2 Input noise variance evaluation

In this work, the variances σ2
i of the noise copies ϵij (equation 7, main paper body) for each

aperture diameter Di were evaluated in two different ways.
Given equation 7 (main paper body), the classic way is to compare the experimental

values Ln
(
Bij EXP

)
k
obtained on the phantom k, aperture diameter Di and cycle j, with

the averaged value Ln
(
Bij EXP

)
k
over the number of cycles Jki measured on the phantom

k and with aperture diameter Di, so that:

σ2
i Classic =

1

(Nki −K)

K∑
k=1

Jki∑
j

(
Ln

(
Bij EXP

)
k
− Ln

(
Bij EXP

)
k

)2

(15)

where K is the number of phantoms, and Jki is the total number of cycles for the phantom
k and aperture diameter Di. Thus, the parameter Nki =

∑K
k=1 Jki is the number of tests

that one has at hand for aperture diameter Di.
The unbiased variance σ2

i Classic is an exact evaluation under the hypothesis that the
model perfectly fits the data and that the random disturbance ϵij is of zero mean: in equa-

tion 15, the average value Ln
(
Bij EXP

)
k
plays the role of a model that ’perfectly’ fits the

data.
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In the cases where these hypotheses are not perfectly met, the classic variance underesti-
mates the actual variance. Another variance estimation, also known as the Almost Unbiased
Estimator (AUE), has been implemented based on [82]:

σ2
i AUE =

1

Nki

K∑
k=1

Jki∑
j

u2
ij k

(1− ĥijk)
(16)

where uij k is the residual error vector obtained on phantom k, aperture diameter Di and
cycle j after fitting a model on all phantom k experimental data (one cost function ϕparam

per phantom k, equation 8, main paper body). The leverages ĥijk are the diagonal values
of the ’hat’ matrix Hk of dimensions Jki × Jki defined for the kth non-linear model on the
phantom k. The hat matrix Hk defined for non-linear models on phantom k writes [43]:

Hk = Fk

(
β̂
)[

FT
k

(
β̂
)
Fk

(
β̂
)]−1

FT
k

(
β̂
)

(17)

where Fk

(
β̂
)
is the Jki × P Jacobian matrix of wi Ln

(
Bi SIM k(β, θ)

)
evaluated at β = β̂

on the phantom k.
In this contribution, the AUE variance was computed iteratively. The starting weights

were chosen so that w2
i = 1 to define the function ΦParam in equation 8 (main paper

body). The residual error vector uij k minimizing ΦParam (equation 9, main paper body)
was then computed and injected in equation 16 to provide a variance estimation σ2

i AUE .
This estimation has then been used to compute new weights (w2

i = 1/σ2
i AUE) and a new

iteration was performed. Iterations were performed until the convergence of σ2
i AUE (few

iterations in practice).


